2013年7月17日星期三

Porosity in Natural Soils--by GOLD APP INSTRUMENTS

 The porosity of a soil depends on several factors, including (1) packing density, (2) the breadth of the particlesize distribution (polydisperse vs. monodisperse), (3) the shape of particles, and (4) cementing. Mathematically considering an idealized soil of packed uniform spheres, φ must fall between 0.26 and 0.48, depending on the packing. Spheres randomly thrown together will have φ near the middle of this range, typically 0.30 to 0.35. A sand with grains nearly uniform in size (monodisperse) packs to about the same porosity as spheres. In a polydisperse sand, the fit-ting of small grains within the pores between large ones can reduce φ, conceivably below the 0.26 uniform-sphere minimum. Figure 2 illustrates this concept. The particular sort of arrangement required to reduce φ to 0.26 or less is highly improbable, however, so φ also typically falls within the 0.30-0.35 for polydisperse sands. Particles more irregular in shape tend to have larger gaps between their nontouching surfaces, thus forming media of greater porosity. In porous rock such as sand-stone, cementation or welding of particles not only creates pores that are different in shape from those of particulate media, but also reduces the porosity as solid material takes up space that would otherwise be pore space. Porosity in such a case can easily be less than 0.3, even approaching 0. Cementing material can also have the opposite effect. In many soils, clay and organic substances cement particles together into aggregates. An individual aggregate might have a 0.35 porosity within it, but the medium as a whole has additional pore space in the form of gaps between aggregates, so that φ can be 0.5 or greater. Observed porosities can be as great as 0.8 to 0.9 in a peat (extremely high organic matter) soil.

Porosity is often conceptually partitioned into two components, most commonly called textural and structural porosity. The textural component is the value the porosity would have if the arrangement of the particles were random, as described above for granular material without cementing. That is, the textural porosity might be about 0.3 in a granular medium. The structural component represents nonrandom structural influences, including macropores and is arithmetically defined as the difference between the textural porosity and the total porosity.

The texture of the medium relates in a general way to the pore-size distribution, as large particles give rise to large pores between them, and therefore is a major influence on the soil water retention curve. Additionally, the structure of the medium, especially the pervasive-ness of aggregation, shrinkage cracks, worm-holes, etc. substantially influences water retention.



V-Sorb 4800P surface area and particle size analyzer